こちらが超基本のイメージ。 もう少し細かく整理しておきます。 精度が伸び悩むときは:learning_rate を下げて iterations を上げるのが定石。 過学習が疑われるときは:min_child_weight や l2_leaf_reg を上げて抑制。 カテゴリ変数が多いときは:CatBoostが便利(cat ...
データアナリスト/データサイエンティストのためのカジュアルな勉強会「Data Gateway Talk」。「GBDTアルゴリズム」というテーマで登壇した工学院大学情報学部コンピュータ科学科のYasshieeee氏は、勾配ブースティングの基本、そしてアルゴリズム「XGBoost ...